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Aurélie Pirayre, Camille Couprie, Laurent Duval

IFP Energies nouvelles
1 et 4 avenue de Bois-Préau
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ABSTRACT
The obtention of representative graphs is a key problem in an
increasing number of fields, such as computer graphics, social
sciences, and biology to name a few. Due to the large num-
ber of possible solutions from the available amount of data,
building meaningful graphs is often challenging. Nonethe-
less, enforcing a priori on the graph structure, such as a mod-
ularity, may reduce the underdetermination in the underlying
problem. In this work, we introduce such a methodology in
the context of Gene Regulatory Network inference. These
networks are useful to visualize gene interactions occurring
in living organisms: some genes regulate the expression of
others, structuring the network into modules where they play
a central role. Our approach consists in jointly inferring the
graph and performing a clustering using the graph-Laplacian-
based random walker algorithm. We validate our approach on
the DREAM4 dataset, showing significant improvement over
state-of-the-art GRN inference methods.

Index Terms— genomic data analysis, graph construc-
tion, combinatorial Dirichlet problem, random walker

1. INTRODUCTION

In many applications [1–3], the design of a graph structure
capturing the essence of a set of observed data constitutes a
central problem. The latter may be tackled with two main
types of approaches. The first one relates to the definition
of an appropriate statistical model, e.g. a Gaussian graphical
model. It often resorts to the estimation of a large covariance
matrix [4, 5], also called dispersion matrix. Its inverse, the
concentration or precision matrix, may directly be interpreted
as the adjacency matrix defining the underlying network or-
ganization. The edge presence or absence thus encodes in-
formation in the associated graph. The second type of ap-
proaches, less popular in the signal processing community,
but more likely to be encountered in computer vision, formu-
lates problems from a combinatorial optimization standpoint.
We adopt the second strategy throughout this work and ex-
press the desired graph as the solution of a variational formu-
lation.

Additionally, assumptions on the network topology [6]
alleviate part of the optimization burden and promote more
pragmatic solutions. In several contexts, for instance social
networks, road and traffic networks or biological networks,
the graphs to infer exhibit a community structure or modu-
larity, driven by a limited number of specific nodes. From
the knowledge of these particular nodes, we constrain such a
modular structure into the network using the “random walker”
clustering algorithm [7].

In the biological context of our application, for each gene
of a studied organism placed in different living conditions,
a signal consisting of a sequence of expression levels of the
gene is collected. From these data, regulatory processes be-
tween genes may be recovered and are represented in the
shape of a graph where nodes are associated to genes and
edges to regulations relationships. Such networks are called
Gene Regulatory Networks (GRNs). In addition to the GRNs,
the biology community has at its disposal another kind of
tools, based on clustering [8, 9] to extract useful information
from gene expression data. To the best of our knowledge,
only very few methods, often relying upon graphical mod-
els [10–12], perform joint clustering and graph inference in
order to improve the network.

GRN inference is a well-studied topic, see for instance
[13–15] for recent overviews. However, satisfactory results
remain difficult to obtain, due to the very limited length of
expression signals, in comparison to the number of genes.
A first line of methods approaches the problem by comput-
ing a similarity score between expression profiles of pairs of
genes, such as the mutual information (e.g. ARACNE [16]
and CLR [17]). Among the top performing GRN inference
methods, GENIE3 [18] expresses the whole inference as a set
of regression problems solved by using random forests. Alter-
natively, a vast literature relies on graphical models methods,
e.g. SIMoNe [12]. Similarly however, model estimation be-
comes inaccurate if the number of samples (the signal length)
is small compared to the number of variables, which often
happens in GRN inference. Adopting a strategy similar to
ours, [10] suggests the adjunction of clustering results to im-
prove GRN inference. However, the clustering step is decou-



pled from the graph construction at the detriment of the spatial
smoothness promoted in our approach. In the “Module net-
works” approach of [19], the authors design a module infer-
ence method based on probabilistic graphical models, specific
to gene expression signals. Similarly to [19], we assume that
a list of putative transcription factors (TFs), proteins coded by
genes regulating the expression of other genes, is available.

Our formulation requires the construction of a fully con-
nected graph, where nodes correspond to genes, and edges
connecting every pair of genes are weighted by similarity
measures between the gene expression signals.

The variational approach we propose both generates the
topology and the clustering of the GRN graph. The graph
structure, defined by variables on the edges on the graph, and
the clustering solution, defined by variables on the nodes, are
computed through an optimization procedure. Our objective
function is designed to constrain the construction of a modu-
lar network. Its clustering step involves a seeded graph-based
technique where the modular structure is driven by marked
nodes. In our application, these nodes correspond to known
TFs.

The paper is organized as follows: in Section 2, we for-
mulate our joint clustering and graph inference approach as
an optimization problem and detail the optimization strategy
to solve the problem. The evaluation of the proposed method,
in the GRN inference context, is performed and results are
given in Section 3, before our conclusions in Section 4.

2. JOINT INFERENCE/CLUSTERING MODEL

2.1. Classical inference graph construction

As described in [20], graph inference may be expressed as an
edge selection problem. Our goal is to compute a GRN in-
ference graph G∗ where nodes correspond to genes and edges
correspond to true regulation relationships between genes.
We assume in this work that a list of T module central nodes
is available. In our situation, this means that genes in this list
are known to code for TFs (transcription factors). We denote
this list by T = {t1, . . . , tT }. As we assume that regulations
are oriented from TFs to non-TF genes, we do not infer the
edge directions.

We thus define an initial undirected non-reflexive graph
G with a set of g nodes denoted by V , and a set of n
weighted edges E between every couple of nodes. We have
V = {1, . . . , g}, and the initial number of edges equals
n = g(g − 1)/2. We denote by (iτ )1≤τ≤T the indices of the
nodes in T . Let us define an edge label xi,j that indicates the
presence of an edge between genes i and j, i.e. xi,j = 1 if
the edge ei,j is present in the inferred graph, and xi,j = 0
otherwise.

We first compute similarity measures wi,j between the
expression signals of every couple (i, j) ∈ E, where E is
the set of edge indices, using for instance mutual information

e.g. [17], or one of the graph inference methods available in
the literature e.g. GENIE3 [18]. These weights are normal-
ized to belong to the interval [0, 1]. The results of classical
inference methods may often be recovered by solving

maximize
x∈{0,1}n

∑
(i,j)∈E

wi,jxi,j + λ(1− xi,j), (1)

where λ ∈ [0, 1] is a scalar corresponding to a threshold on
the weights w. In this case, the optimal x∗ is given by the
explicit solution:

∀(i, j) ∈ E, xi,j =

{
1 if wi,j > λ,

0 otherwise.
(2)

2.2. Using clustering in the graph construction

Let y ∈ Ng denote the labeling of a clustering of the nodes.
In order to perform a joint clustering and graph construction,
we propose to modify the variational Problem (1) as follows

maximize
x∈{0,1}n,y∈Ng

∑
(i,j)∈E

wi,jxi,jf(yi, yj) + λ(1− xi,j) (3)

where f : R2 → R is a function that maps (yi, yj) to
• a high value if i and j are in the same cluster,

• a low value if i and j are in different clusters.
The previous graph inference is hence influenced by the

clustering, preventing edges to appear across different clus-
ters. A simple choice for f is

f(yi, yj) =
β − 1(yi 6= yj)

β
∈ [0, 1]. (4)

The parameter β, a real number greater than one, controls the
influence of the clustering prior: a large value reduces its im-
pact. Our method requires the introduction of some markers,
also called seeds, to avoid a trivial solution. Assuming a mod-
ular structure of the network organized around the nodes in T ,
we add to Problem (3) the following affine constraint:

y ∈ C = {(zi)1≤i≤g ∈ Rg | ∀τ ∈ {1, . . . , T}, ziτ = tτ}.
(5)

Two results are derived if we now look at Problem (3) subject
to Constraint (5).
• At fixed y, and variable x, an explicit solution exists,

given by

xij∗ = 1(wij −
wij
β
1(yi 6= yj) > λ). (6)

• At fixed x, and variable y: the optimization problem re-
duces to

minimize
y∈Ng∩C

∑
(i,j)∈E

αi,j1(yi 6= yj) (7)



where

αi,j =


0 if wi,j ≤ λ
wi,j − λ if λ < wi,j ≤ λβ

β−1
wi,j
β

if wi,j > λβ
β−1 .

(8)

This provides an optimization formulation for solving the
joint clustering and graph construction problem. However,
it turns out that Problem (7) is NP-hard [21]. In order to
circumvent this difficulty, a continuous relaxation of this
combinatorial problem can be introduced. To do so, assume
that L is the number of clusters and introduce L vector vari-
ables y(1), . . . , y(L) of size g, whose components are:

∀i ∈ V,∀l ∈ {1, . . . , L}, y
(l)
i =

{
1 if yi = l

0 otherwise.
(9)

Problem (7) is then equivalent to:

minimize
y(1)∈C(1),...,y(L)∈C(L)

(y(1),...,y(L))∈D

L∑
l=1

( ∑
(i,j)∈E

αi,j(y
(l)
i − y

(l)
j )2

)
(10)

where, for every l ∈ {1, . . . , L},

C(l) = {(z(l)i )1≤i≤g ∈ Rg | ∀τ ∈ {1, . . . , T}, z(l)iτ = t(l)τ },
(11)

t(l) being defined from t ∈ T by a relation similar to (9), and

D = {(y(1), . . . , y(L)) ∈ ({0, 1}g)L |
L∑
l=1

y(l) = 1g} (12)

with 1g = (1, . . . , 1)> ∈ Rg . A convex relaxation of Prob-
lem (10) is then obtained by replacing D by its convex hull

D̂ =

{
(y(1), . . . , y(L)) ∈ ([0, 1]g)L |

L∑
l=1

y(l) = 1g

}
.

A further simplification arises by dropping the latter con-
straint, in which case the optimization problem decouples
into L quadratic convex problems. Provided that there is at
least one marker in each connected component of the graph,
each of these problems, known as the combinatorial Dirichlet
problem, has a unique solution which can be obtained by
solving a linear system of equations [7]. In addition, it can be
shown that this solution actually belongs to the set D̂, so that
L−1 linear systems only need to be solved. We note here that
a continuous-valued Markov Random Field interpretation of
the combinatorial Dirichlet problem is provided in [22].
Then, the final clustering label variable y∗ = (y∗i )1≤i≤g is
given by

∀i ∈ V, y∗i = argmaxl∈{1,...,L}y
(l)
i . (13)

Finally, the optimal clustering y∗ is inserted in (6) to obtain
the final edge labeling of the GRN.

3. RESULTS

We called our approach BRANE Clust in reference to ”Bi-
ologically Related A priori for Network Enhancement via
Clustering”. We now demonstrate its performance on two
GRN inference datasets, the DREAM4 multifactorial chal-
lenge [13] and DREAM5 [14], by comparing our results
to three GRN inference methods, namely ARACNE [16],
CLR [17], and GENIE3 [18]. The DREAM4 multifactorial
dataset contains five ground truth networks extracted from
the GRNs of E. coli and S. cerevisiae, provided with simu-
lated expression signals of length 100. They all contain 100
genes, from which about half of them are known as TFs. The
DREAM5 network used in our evaluation is a simulated net-
work of 1643 genes including 195 TFs and signals of length
487.

To evaluate the obtained networks, we compare them with
the true networks using two measures derived from the stan-
dard confusion matrix. The Precision is defined as TP

TP+FP

and the Recall is computed by TP
TP+FN , where TP is the num-

ber of true positive, FP is the number of false positive and FN
is the number of false negative. The Precision value indicates
the proportion of correctly inferred edges (TP) compared to
the total number of inferred edges (TP + FP). The Recall
value reveals the proportion of correctly inferred edges (TP)
compared to the total number of expected edges given by the
gold standard (TP + FN).

Each evaluated method produces a graph depending upon
a threshold parameter defined on their weights. In our case,
the threshold is given by λ. The variation of this parameter
allows us to compute a Precision-Recall curve, and to deduce
another performance measure, the Area Under Precision-
Recall (AUPR) curve. A larger value of AUPR reflects a
better accuracy.

We choose for BRANE Clust the weights given by the
best available method, namely GENIE3. The AUPR obtained
using the different methods including BRANE Clust are re-
ported in Table 1. In all our tests, better results are obtained
for a β parameter value close to 2.

On DREAM4, BRANE Clust results in about a 10 %
improvement over CLR and GENIE3, in terms of AUPR.
We note that the improvement mostly takes place at the be-
ginning of the Precision-Recall curve, meaning that BRANE

Network index 1 2 3 4 5
GENIE3 [18] 0.239 0.260 0.323 0.301 0.295
CLR [17] 0.245 0.255 0.299 0.298 0.299
BRANE Clust 0.243 0.277 0.369 0.328 0.332

Table 1. Area Under Precision-Recall for CLR, GENIE3 and
BRANE Clust methods on the DREAM4 dataset. For GE-
NIE3, only TF genes are used as input genes. BRANE Clust
was initialized using GENIE3 weights.



Fig. 1. CLR (blue), GENIE3 (green) and BRANE Clust (pink) Precision-Recall curves on the DREAM4 dataset and on the first
DREAM5 network. On the DREAM5 network also appears the ARACNE Precision-Recall curve in red. For a better readibility,
all curves are truncated at the same point on the x axis.

Clust improves the accuracy of inferred networks of rela-
tively small size but high precision. The evaluation of [12] on
DREAM4 leads to poor results: the average of the maximal
Precision over the five network does not exceed 35 %. On the
larger network of DREAM5, the BRANE Clust gain is even
more important, with a relative improvement of 19 % over
GENIE3 and 38% over CLR. The corresponding Precision-
Recall curves appear in Figure 1. Regarding computation
times, our BRANE Clust approach is extremely fast, as it only
takes 3 seconds on the DREAM5 network. In comparison to
the weight computation times, that represent approximately
10 minutes for CLR and one hour for GENIE3, this cost is
negligible.

A visualization of the inferred graph at a threshold result-
ing in a Precision of 0.75 is given in Figure 2. This means
that 3/4 of the graph is correctly predicted, clearly showing
the modular structure of the network. The modularity is still
visible at a lower Precision, but reaches its limits in improving
GRN inference results.

4. CONCLUSIONS

In contrast to the large majority of clustering and graph in-
ference method which heavily relies on Gaussian graphical
models, our model incorporates a priori by fixing a small
set of pre-labeled nodes and constraining the graph construc-
tion using the random walker segmentation algorithm. The
significant improvement obtained on GRN inference datasets
shows the potential efficiency that spatial coherency enforce-
ment can bring to graph construction in a more general con-
text. Our work could thus be inspiring for graph construction
problems encountered in other applications.
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